★ 当前位置:首页 - 中小学教案精选 - 数学教案/高二 - 正文

不等式的证明(二)(3)

[]
来源: 2004-1-23 5:47:35

教学难点 不等式性质的综合运用
教学方法 启发引导式
教学活动
(-)导入新课
(教师活动)打出字幕(课前练习),引导学生回忆所学的知识,尽量用多种方法完成练习,投影学生不同解法,并点评.
(学生活动)完成练习.
[字幕]
1.证明 ( ).
2.比较 与 的大小,并证明你的结论.
1.证法一:由 ,所以
方法二:由 ,知 ,即 ,所以
2.答:
证法一:由 ,所以
证法二:由 知 ,所以
[点评]两道题的证法一都是用的比较法,证法二我们在6.1节和6.2节已学过,这种方法是综合法,是本节课学习的内容.(板书课题)
设计意图:通过练习,复习比较法证明不等式,导入新课:综合法证明不等式.提出学习任务.
(二)新课讲授
【尝试探索,建立新知】
(教师活动)教师提出问题:用上述方法二证明 ,并点评证法的数学原理,
(学生活动)学生研究证明不等式.
[问题]证明
(证明:因为 ,所以 ,即 .)
[点评]
①利用某些已知证明过的不等式(例如平均值定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.
②综合法证题方法:由已知推出结论.这里已知可以是已知的重要不等式,也可以是已知的不等式性质.
设计意图:探索解决问题的新方法,建立新知识,构建用综合法证明不等式的方法原理.
【例题示范、学会应用】
(教师活动)教师板书例题,引导学生研究问题,构思证题方法,学会用综合法证明不等式,并点评用综合法证明不等式必须注意的问题.
(学生活动)学生在教师诱导下,研究问题,与教师一道完成问题的论证.
例1 已知 ,求证
[分析]由于不等式左边是和的形式,右边为常数,可用平均值定理作为已知不等式推证.
证明:因为 ,则 ,所以 .故
 [点评]此题的证明方法是综合法,在证明过程中,把平均值定理作为已知不等式,而平均值定理是有条件限制的,所以要用重要不等式作为已知不等式,注意要证的不等式必须符合重要不等式的条件和结构特征.
例2 已知a,b,c是不全相等的正数,求证
[分析]由不等式右边为6abc是积的形式,左边是和的形式,可知由 出发可证.
证明一(见课本)
证明二:
因为a,b,c是不全相等的正数.所以 , , ,且三式不能全取“=”号.
所以

[点评]
①综合法的思维特点是:由已知推出结论.用综合法证明不等式中常用的重要不等式有:
; ( ); ( ); (a,b同号), ( )。
②此例中条件a,b,c是不全相等的正数,所以最后所证不等式取不到等号.
③由于作为综合法证明依据的不等式本身是可以根据不等式的意义、性质或比较法证出
的,所以用综合法可以获证的不等式往往可以直接根据不等式的意义、性质或比较法来证明.
我们在证明不等式时,选择方法要适当,不要对某种方法抱定不放,要善于观察,根据题目的特征选择证题方法.
设计意图:巩固用综合法证明不等式的知识,掌握用综合法证明不等式中,常用的重要不等式,理解综合法证明不等式与比较法证明不等式的内在联系.
【课堂练习】
(教师活动)打出字幕(练习),请甲、乙两位同学板演,巡视学生的解题情况,对正确的证法给予肯定,对偏差及时纠正,点评练习中存在的问题.