★ 当前位置:首页 - 中小学教育研究 - /教育论文/数学论文 - 正文

小学数学整体教学浅探

[]
来源: 2003-1-1 18:43:00
九年义务教育全日制小学数学教学大纲,明确地指出:“小学数学中的概念、性质、法则、公式、数量关 系和解题方法等最基础的知识,是进一步学习的基础,必须使学生切实学好。”而小学数学教材中的上述知识 多达几百个,由于在教学中,缺乏学法指导,学生往往采取“单打一”的方式,死记硬背,其结果造成记忆上 的杂乱无章和应用上的混淆。长此下去必然出现知识漏洞,影响学生学习新的知识。那么怎样消除学生在学习 中产生的这种障碍呢?在教学中教师应结合教材和学生实际,发挥整体教学功能,使学生把知识的各部分联系 起来,找出知识的本质和规律,让学生在理解的基础上,逐步掌握知识。这样的教学活动才能为学生进一步学 习做好铺垫和准备,消除学习障碍,提高教学效率。根据知识之间的关系,大体可以从以下三个方面运用整体 教学。
  一、在知识的连结处实施整体教学
  知识之间的联系性决定了某些知识不是孤立的,它们之间连结紧密,如果学生对其中一个知识点含糊不清 ,必然影响后面知识的学习和掌握,形成知识系统中的“断裂带”。如果教师在知识的连结处实施整体教学, 适时正确引导学生认识知识间的内在联系,就可以避免“断裂带”的产生。
  例如,第七册异分母分数加减法,以往的教学是轻算理重算法,一味地强调,先通分,然后按照同分母分 数加减法的法则进行计算。一节新授课下来效果满好,但在学习了分数乘除法后产生混淆,分数加减法做成分 子加分子,分母加分母。很明显由于死记硬背,知识的负迁移,干扰学生正确掌握法则。
  为排除干扰,使学生在理解的基础上掌握法则,教师首先用系统科学的观点,把整数、小数、分数加减法 法则视为一个整体进行分析,它们虽然在叙述形式上有所不同,但“统一单位后方可相加减”这一宗旨,把三 个法则紧密连结在一起。于是在异分母分数相加减的新授课上,安排了这样三道准备题:"479—163"、"134.2 6—32.1"、"1/5+3/5",先板演,然后教师设问:(1)“为什么整数加减法相同数位要对齐?”学生答:“数位 对齐了,记数单位就统一了,才能相加减。”(2)“小数加减法,为什么要把小数点对齐?说明什么?”学生答 :“小数点对齐也就是把相同数位对齐,说明记数单位统一了,才能相加减。”(3)“同分母分数相加减,为什 么分子可以直接相加减,分母不变?”学生答“因为同分母的分数单位相同,所以可以分子直接相加减,分母 不变。”紧接着出示例2,"4/5-3/8",教师问“异分母分数加减法分子能直接相加减吗?”学生答:“因为4/ 5的分数单位是1/5,而3/8的分数单位是1/8,这两个分数单位不同不能直接相减。”教师问:“如何转化为分 数单位相同的两个分数?又怎样减呢?”学生答:“把4/5和3/8通分后,转化为`32/40-15/40',这两个分数的 单位都是1/40,32个1/40减15个1/40等于17个1/40。”接着教师及时小结:无论整数、小数、分数相加减,都 要统一记数单位后才能相加减。
  上述过程教师实施整体教学,由浅入深把三个法则串连组合起来,清楚地展示了三个法则的连结关系,使 学生从中可以看出:前面法则是后面法则的基础;后面法则是前面法则的发展。这样进行教学,学生自然对异 分母分数加减法法则印象非常深刻,学过分数乘除法后就不会发生混淆现象。
  二、在知识的从属关系上实施整体教学
  某些知识之间不是前后连结的关系,而是集合中的元素与集合的关系。如果学生对这些知识分不清主次先 后,掌握起来就会出现错误或混淆,这就要求教师正确实施整体教学,在每块知识教学后,及时帮助学生弄清 从属关系,分清主次,把掌握的重点放在核心概念上,这样就能用最经济的时间取得最大的效果。
  例如,当学生已学完梯形的特征后,教师及时把前边学过的长方形、正方形、平行四边形,都归属于四边 形这个整体范畴中,进行系统的归纳和概括,使之形成较完整的结构。教师问:(1)“长方形和正方形有什么特 征?它们有什么区别与联系?用集合图怎样表示?”(2)“平行四边形有什么特征?与长方形有什么联系与区别 ?怎样表示它们的关系?”(3)“梯形有什么特征?与平行四边形有什么联系与区别?怎样表示它们的关系?” (4)“正方形、长方形、平行四边形、梯形它们的边有什么共同特征?怎样表示它们的关系?”学生边答教师边 板书:四边形运用集合图把有联系的概念组合起来,较形象地揭示出它们之间的从属关系。不难看出:正方形 、长方形、平行四边形、梯形都从属于四边形这个核心概念。这样就从整体上把握了这些图形概念的内涵和外 延,收到事半功倍的效果。