★ 当前位置:首页 - 中小学教育研究 - /教育论文/数学论文 - 正文

数学联想和想象能力的培养(2)

[]
来源: 2003-1-1 6:41:00

  5×4+3×4=(5+3)×□;
  5×4+3×4=□×(□+□)或者设计趣味练习:
  △×(□+○)=_×_+_×_;△×□+○×□=(_+_)×_。
  思维的灵活性与可逆联想有着密切的关系。学生掌握了知识的可逆性,再经过训练,思考问题时,不仅能 正向思维,而且会逆向思维。但必须注意,有的知识逆推后,答案不止一个,有的知识不可以逆推,即不存在 可逆性。
  (二)想象能力的培养
  思维过程有了想象的参与,智力才能得到发展。要培养学生的创造性思维,离开想象不可能取得成效。正 如伟大的科学家爱因斯坦所说的:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切 ,推动着进步,并且是知识进化的源泉。”
  1.在知识的发生、形成过程中,培养学生的想象力。例如,在认识直线时,先让学生认识线段,形成线 段的概念,建立线段是直的、有两个端点、是有限长的表象;然后把线段的两端向相反方向延长,引导学生用 “直”的表象和延长的动态表象,去想象这条直线穿越空间,没有尽头,帮助学生建立直线没有端点、是无限 长的表象,形成直线的概念。
  2.在知识的发展、应用过程中,训练学生的想象力。有位教师教学分数意义时,在学生理解了分数的意 义后,要学生在下面的正方形中画出表示分数3/4的阴影部分,并标出它的分数单位,学生画出了如下七种 图形:
  (附图 {图})
  画图过程中学生应用分数、正方形概念的同时,也加深了对分数意义的理解,发挥了想象力。
  3.在探索解题思路的过程中,发展学生的想象力。美国数学家斯蒂恩说:“如果一个特定的问题可以被 转化为一个图形,那么,思想就整体地把握了问题,并且能创造性地思索问题的解法。”当学生解题思路受阻 时,我们引导学生用图解法寻求解题途径,这实际上就是让学生运用再造想象,创造性地探索问题的解法。
  如义务教材五年制第九册的一道题“有两袋大米,第二袋的重量是第一袋的4/5。如果从第一袋中拿出 4千克放入第二袋,两袋的重量相等。这两袋大米各重多少千克?”学生往往错误地认为第一袋与第二袋相差 4千克。如果我们引导学生运用再造想象,根据题意画出线段图,难点就会迎刃而解。
  (附图 {图})
  通过线段图可明显地看出,第一袋比第二袋多4×2千克,相当于第一袋的(1-4/5),求第一袋大 米的重量可列式为:4×2÷(1-4/5)。
  4.在故设障碍的辨析中,激活想象力。为了促进想象能力的发展,教学中设计一些干扰性练习,让学生 在扫除障碍中,透过现象看本质,保持正确认识。
  有位老师出了这样一道选择题:如长方形图中,甲图的周长(大于、小于、等于)乙图的周长。学生一般 想象:面积大的周长大,面积小的周长小。图中甲、乙面积大小的图景和周长大小的图景不一致,干扰了学生 对过去形成的表象的认识。通过分析:因为长方形对边相等,曲线是甲、乙两个图的公共边,所以,甲、乙两 图的周长相等。这样修正了学生原来的错误想象。通过正、反辨析,使学生吃一堑长一智,再造想象和创造性 想象能力都得到了提高。
  (附图 {图})
  (三)需要重视的几个问题
  1.引导学生正确地进行观察。要培养学生的想象和联想能力,首先要提高观察能力。教给学生科学的观 察方法,结合教学内容进行有效地观察训练。要求学生观察时做到四要:一要认真细致,二要有序有向,三要 全面深刻,四要有静有动。